SEALED
STAINLESS STEEL
DURA-FLO
INVERTED BUCKET STEAM TRAPS

Pressures to 650 PSIG (45 barg)
Temperatures to 497 ºF (258 ºC)

Easy Trap Replacement — Universal two bolt swivel mounting option simplifies removal from system.
Simple Installation — Stainless mounting Block mounts permanently into system. Trap installs via two bolt universal mount connection.
Hardened Chrome Steel Valve and Seat — Long life and maximum corrosion resistance.
Stainless Steel Bucket — Long lasting, rugged and naturally resistant to water hammer.
Inexpensive — Low maintenance and initial cost.
Stainless Steel Body — Durable heavy wall construction provides years of reliable service and resists corrosion and freezing.
Suitable for Wide Variety of Loads/Applications — Horizontal models in three body sizes.
Resists Dirt and Scale — Valve and seats positioned at top of traps ensure long service.
Maintenance Free (TSBT-_S and USBT-_S) — Sealed design prevents unnecessary tampering. Trap can be inspected and replaced without breaking pipe.
Freeze Resistant — Extruded SS Body helps prevent problems associated with freezing conditions.

MODELS

NPT CONNECTION
- TSBT-LS — Low Capacity, 200 PSIG
- TSBT-MS — Medium Capacity, 340 PSIG
- TSBT-HS — High Capacity, 650 PSIG

UMT CONNECTION
- USBT-LS — Low Capacity, 200 PSIG
- USBT-MS — Medium Capacity, 340 PSIG
- USBT-HS — High Capacity, 650 PSIG

UMT CONNECTOR BLOCKS
- UMTC — Standard connector (1/2" & 3/4" only)
- UMTCY-RH — Right Hand Connector with Y Strainer
- UMTCY-LH — Left Hand connector with Y Strainer
- UMTVS-BB — Connector with Isolation Valves, Strainer, Blowdown Valve and Test Port

APPLICATIONS
- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Unit Heaters
- Oil Preheaters
- Converters
- Coils
- Rotating Drum

Canadian Registration #: OE10389.52

For information on Big Block UMTVS-BB Connector SEE PAGE 116

OPERATION

After trap is installed and primed, steam entering the trap collects in the top of the bucket, floating the bucket and forcing the valve into its seat. As condensate begins to flow into the trap, steam and air are forced from the bucket. This causes the bucket to begin losing buoyancy, tending to pull the valve from its seat. When enough condensate has entered the trap, displacing the steam and air, the bucket drops, pulling the valve from the seat and allowing condensate and air to discharge. As the flow of condensate stops, steam enters the trap and re-floats the bucket, forcing the valve into its seat. The cycle then repeats as more condensate reaches the trap.
SEAL STAINLESS STEEL DURA-FLO
INVERTED BUCKET STEAM TRAPS

SPECIFICATION

Furnish and install as shown on the plans, inverted bucket traps capable of discharging condensate, air and other non-condensable gases without loss of steam. These traps shall have a stainless steel sealed body, hardened chrome steel valve and seat and an all stainless steel linkage and bucket. It shall have a universal mount connector option.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure See Orifice Selection
TMO: Max. Operating Temperature Saturated at PMO
PMA: Max. Allowable Pressure -
 LS 200 psig (13.8 barg) at 450ºF (232ºC)
 MS 307 psig (21.2 barg) at 450ºF (232ºC)
 HS 650 psig (44.8 barg) at 497ºF (258ºC)
TMA: Max. Allowable Temperature -
 MS, LS & HS - 800ºF (425ºC)

MATERIALS OF CONSTRUCTION

Body ... AISI 304 SS
Bucket .. AISI 304 SS
Bucket Clip .. AISI 304 SS
Lever .. AISI 304 SS
Inlet Tube ... AISI 304 SS
Valve.......................... Hardened Chrome Steel AISI D3
Valve Seat Hardened Chrome Steel AISI D3
Connector AISI 304 SS

Connections: 3/8” – 1” NPT

DIMENSIONS inches (mm) AND WEIGHTS pounds (kg)

For Kg/Hr Multiply by .454

Maximum Capacity—(lbs/hr)

<table>
<thead>
<tr>
<th>Trap</th>
<th>Orifice</th>
<th>Differential Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>SBT-LS & TSBT-LS</td>
<td>3/32</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3/16</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5/32</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>7/64</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>3/32</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>5/64</td>
<td>400</td>
</tr>
<tr>
<td>USBT-MS & TSBT-MS</td>
<td>3/32</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>1/8</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>7/64</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>3/32</td>
<td>650</td>
</tr>
</tbody>
</table>

For Kg/Hr Multiply by .454

* CRN not available